This guide will help you install Azcore, a professional agentic framework for building complex AI agent systems with advanced orchestration, reinforcement learning, and multi-agent reasoning.
Prerequisites
Before installing Azcore, ensure you have:
- Python 3.12+ (Python 3.12 or 3.13 recommended)
- pip (comes bundled with Python)
- OpenAI API Key (for LLM functionality)
Verify your Python installation:
python --version
pip --version
Quick Install
Install Azcore from PyPI with a single command:
pip install azcore
This will install the latest stable version of Azcore along with all required dependencies.
Getting Started with the CLI
Azcore comes with a powerful CLI that helps you scaffold projects, validate your environment, and explore examples.
1. Verify Installation
Check that Azcore is installed correctly:
azcore --version
2. Initialize a New Project
Create a new Azcore project using the interactive CLI:
azcore init
This will:
- Display an interactive project setup wizard
- Let you choose from multiple project templates
- Create a complete project structure with all necessary files
- Generate configuration files and examples
Available Templates:
basic-agent- Single agent with ReAct reasoning (perfect for getting started)team-agent- Multi-agent collaboration systemmodular-team- Enterprise-ready team with organized tool modules and MCP supportrl-agent- Agent with reinforcement learning for tool selectionworkflow- Custom workflow orchestration system
Quick Start (Non-Interactive):
# Create a basic agent project
azcore init --template basic-agent --name my-agent
# Create an RL-optimized agent with training scaffolding
azcore init --template rl-agent --name my-rl-agent --with-rl
# Create a modular team system
azcore init --template modular-team --name my-team
3. Set Up Your Environment
After creating your project, navigate to the project directory:
cd my-agent
Install dependencies:
pip install -r requirements.txt
Configure your API keys by copying the example environment file:
# Copy the example .env file
cp .env.example .env
# Edit .env and add your API keys
# OPENAI_API_KEY=your-api-key-here
4. Verify Your Setup
Run the environment diagnostic tool to check your setup:
azcore doctor
This will check:
- Python version compatibility
- Required dependencies
- Configuration files
- API key setup
- Optional components (RL, MCP)
Auto-fix issues:
azcore doctor --fix
Check GPU availability for RL training:
azcore doctor --check-gpu --verbose
5. Run Your Agent
Once your setup is verified, run your agent:
azcore run main.py
Or simply:
python main.py
Explore Examples
The CLI includes a collection of examples to help you learn different Azcore patterns:
List All Examples
azcore examples list
Filter by difficulty:
azcore examples list --difficulty Beginner
azcore examples list --difficulty Intermediate
azcore examples list --difficulty Advanced
Filter by tag:
azcore examples list --tag rl
azcore examples list --tag team
View Example Details
azcore examples show basic-agent
azcore examples show rl-agent
azcore examples show hierarchical-team
Run an Example
# Run directly
azcore examples run basic-agent
# Save to file
azcore examples run basic-agent --output my_agent.py
# Save with config
azcore examples run basic-agent --output my_agent.py --with-config
Search Examples
azcore examples search rl
azcore examples search team
azcore examples search cache
Advanced Setup
Optional Dependencies
Graph Visualization Support
pip install --pre -U graphviz
This enables workflow graph visualization capabilities.
RL Training Dependencies
If you're working with RL-optimized agents, install additional dependencies:
pip install sentence-transformers torch numpy scikit-learn
Or use the --with-rl flag when initializing:
azcore init --template rl-agent --with-rl
Development Dependencies
If you plan to contribute to Azcore or run tests:
pip install azcore[dev]
Virtual Environment (Recommended)
Create an isolated environment for your Azcore projects:
# Create virtual environment
python -m venv azcore_env
# Activate (Linux/Mac)
source azcore_env/bin/activate
# Activate (Windows)
azcore_env\Scripts\activate
# Install Azcore
pip install azcore
Project Structure
After running azcore init, your project will have the following structure:
my-agent/
├── main.py # Main application entry point
├── config.yml # Core configuration (LLM settings)
├── .env.example # Environment variables template
├── .env # Your API keys (create from .env.example)
├── requirements.txt # Python dependencies
├── .gitignore # Git ignore patterns
├── README.md # Project documentation
├── configs/ # Additional configurations
│ ├── config.yml # Main config
│ └── rl_training_config.yml # RL training settings (if --with-rl)
├── data/ # Data storage
├── logs/ # Log files
├── models/ # Model storage (for RL)
├── rl_data/ # RL training data (if --with-rl)
├── scripts/ # Training scripts (if --with-rl)
│ ├── train_synthetic.py # Train RL models
│ └── generate_synthetic.py # Generate synthetic training data
└── team_modules/ # Team modules (modular-team template)
├── communication_tools.py
├── data_tools.py
├── file_tools.py
├── research_tools.py
├── graph_builder.py
└── prompts/
CLI Command Reference
Core Commands
| Command | Description |
|---|---|
azcore init | Initialize a new project with interactive setup |
azcore doctor | Diagnose and validate your environment setup |
azcore examples | Browse, search, and run example projects |
azcore run | Run your agent application |
azcore validate | Validate configuration files |
azcore upgrade | Upgrade Azcore to the latest version |
Options
Initialize with options:
azcore init --template <template> --name <name> --path <path> --force --with-rl
Doctor with options:
azcore doctor --fix --verbose --check-gpu
Examples with filters:
azcore examples list --tag <tag> --difficulty <level>
azcore examples show <id>
azcore examples run <id> --output <file> --with-config
azcore examples search <query>
Troubleshooting
Common Issues
Import Error: ModuleNotFoundError: No module named 'azcore'
# Reinstall Azcore
pip uninstall azcore
pip install azcore
# Check Python environment
which python
OpenAI API Key Error
# Verify .env file exists and has correct format
cat .env
# Check environment variable
echo $OPENAI_API_KEY # Linux/Mac
echo %OPENAI_API_KEY% # Windows
Configuration Issues
# Run diagnostics
azcore doctor --verbose
# Auto-fix common issues
azcore doctor --fix
Dependency Conflicts
# Create fresh virtual environment
python -m venv fresh_env
source fresh_env/bin/activate # Linux/Mac
fresh_env\Scripts\activate # Windows
# Install Azcore
pip install azcore
Getting Help
If you encounter issues:
- Check the GitHub Issues for similar problems
- Review the Getting Started Guide for usage examples
- Ensure you're using a supported Python version (3.12+)
Next Steps
Now that Azcore is installed, you can:
- Follow the Getting Started Guide for basic usage examples
- Explore Agent Patterns for different reasoning approaches
- Learn about Workflow Types for orchestration patterns
- Check the API Reference for detailed documentation